通过网络服务渗出

通过网络服务渗出是指攻击者利用合法Web服务(如云存储、社交媒体或企业API)作为数据外传通道的技术,通过滥用这些服务预设的信任关系和加密通信机制,规避传统基于协议特征或流量异常的检测手段。防御方通常通过监控非常规数据流向(如客户端异常上传量)、检测未授权服务访问或分析用户行为模式来识别潜在渗出行为。

为应对传统渗出技术因数据规模异常、协议特征明显导致的暴露风险,攻击者发展出高度隐蔽的渗出方式,通过数据分块加密、协议语义伪装及业务上下文融合等策略,将渗出行为解构为符合Web服务正常交互模式的微操作,在维持数据泄露效率的同时显著降低可检测性。

当前网络服务渗出匿迹技术的共性在于对合法服务生态的深度寄生与协议语义的精确仿真。分块加密云存储渗出通过数据离散化与加密层叠,将敏感信息碎片隐匿于海量用户文件中;社交媒体隐写渗出利用UGC内容生态的复杂性和平台审核机制的局限性,实现数据在多媒体载体中的光学隐匿;合法API滥用渗出则通过精准模拟业务交互协议,使渗出流量获得授权服务的可信背书。三类技术均采用"协议合规性伪装-数据形态转换-传输节奏调控"的三层匿迹架构,通过将渗出操作分解为多个符合服务商安全策略的原子动作,构建出具备业务合理性的数据泄露通道。

匿迹技术的演进迫使防御方改变单一流量分析的检测模式,需构建API行为建模、隐写媒体解析等深度检测能力,同时整合云服务日志审计与用户实体行为分析(UEBA),建立跨平台的数据流向图谱,才能有效识别高度伪装的渗出行为。

ID: T1567
Sub-techniques:  T1567.001, T1567.002, T1567.003
Tactic: 数据渗出
Platforms: Linux, Office Suite, SaaS, Windows, macOS
Contributors: William Cain
Version: 1.4
Created: 09 March 2020
Last Modified: 15 October 2024

匿迹效应

效应类型 是否存在
特征伪装
行为透明
数据遮蔽
时空释痕

特征伪装

攻击者通过精确模拟目标Web服务的协议规范和业务交互模式,使渗出流量在协议头结构、API调用序列等方面与合法流量完全一致。例如将渗出数据封装为Slack消息附件或Microsoft Graph API的文件上传请求,利用服务商预置的信任机制绕过协议特征检测。

数据遮蔽

利用HTTPS协议的端到端加密特性,结合自定义加密算法对渗出数据进行多层混淆。云存储渗出中的分块加密和社交媒体隐写中的编码转换,使得即便防御方截获流量,也无法直接解析有效载荷内容。

时空释痕

通过将大数据集分割为微碎片并分散在长时间段内传输,结合多服务商跳转机制(如先传至云存储再经社交媒体转发),使完整数据泄露链的特征信号被稀释在不同时空维度的合法流量中,规避基于单一时序或单一服务的检测模型。

Procedure Examples

ID Name Description
S0622 AppleSeed

AppleSeed has exfiltrated files using web services.[1]

G0007 APT28

APT28 can exfiltrate data over Google Drive.[2]

C0017 C0017

During C0017, APT41 used Cloudflare services for data exfiltration.[3]

S0547 DropBook

DropBook has used legitimate web services to exfiltrate data.[4]

G0059 Magic Hound

Magic Hound has used the Telegram API sendMessage to relay data on compromised devices.[5]

S0508 ngrok

ngrok has been used by threat actors to configure servers for data exfiltration.[6]

Mitigations

ID Mitigation Description
M1057 Data Loss Prevention

Data loss prevention can be detect and block sensitive data being uploaded to web services via web browsers.

M1021 Restrict Web-Based Content

Web proxies can be used to enforce an external network communication policy that prevents use of unauthorized external services.

Detection

ID Data Source Data Component Detects
DS0015 Application Log Application Log Content

Review logs for SaaS services, including Office 365 and Google Workspace, to detect the configuration of new webhooks or other features that could be abused to exfiltrate data.

DS0017 Command Command Execution

Monitor executed commands and arguments that may use an existing, legitimate external Web service to exfiltrate data rather than their primary command and control channel.

DS0022 File File Access

Monitor for files being accessed by an existing, legitimate external Web service to exfiltrate data rather than their primary command and control channel.

DS0029 Network Traffic Network Connection Creation

Monitor for newly constructed network connections to web and cloud services associated with abnormal or non-browser processes.

Network Traffic Content

Monitor and analyze traffic patterns and packet inspection associated to protocol(s) that do not follow the expected protocol standards and traffic flows (e.g extraneous packets that do not belong to established flows, gratuitous or anomalous traffic patterns, anomalous syntax, or structure). Consider correlation with process monitoring and command line to detect anomalous processes execution and command line arguments associated to traffic patterns (e.g. monitor anomalies in use of files that do not normally initiate connections for respective protocol(s)).

Network Traffic Flow

Monitor network data for uncommon data flows. Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious.

References